Planning for the Environmental Impact of Distributed Generation

CEC DG CEQA Workshop

Sacramento, Ca April 20, 2000

Jeff Wilson

California Environmental Protection Agency

Air Resources Board

Presentation Overview

- ♦ Potential Air Quality Issues
- ♦ Preliminary Estimates
- ♦ Next Steps
- **♦** Summary

Potential Air Quality Issues

- ♦ Impact on Annual Emissions Inventory
- ♦ Impact on Exposure Patterns
- ♦ Peak Shaving on Hot Summer Days
- ◆ Use of Emergency Standby or Exempt Units

Preliminary Estimates

♦ Impact on Annual Emissions Inventory

—DUA Study

\forall Economics the Driver

¥Utility & Customer Perspective

¥Utility Peak and Baseload Applications

¥Various DG Technologies

¥Eight Local Air Districts

\YSix Pollutarts

2002 Market Potential Utility Peak Application

2002 Market Potential Utility Base Application

2002 Emissions Due to Cost-effective Utility Peak DG

2002	Load Growth (MW/ yr): 976			Tons of Emissions (Thousand Tons CO2)		
Peaking DG Option	Portion of Growth	DRA]	FT4/2	20/00 co2		
System Only	100%	15	13	24		
Microturbine	28.7%	52	12	58		
ATS	57.7%	65	10	73		
Conventional CT	32.1%	56	23	58		
Dual Fueled Engine	36.8%	429	28	65		
Otto/Spark Engine	54.1%	204	35	71		
Diesel Engine	75.5%	1,466	261	152		

2002 Emissions Due to Cost-effective Utility Base DG

2002	Load Growth (M	1W/ yr): 976	Tons of Emissions (Thousand Tons CO2)		
Baseload DG Option	Portion of Growth	DRA]	$FT_{PM}4/2$	20/00	
System Only	100%	368	312	571	
Microturbine	4.4%	490	309	688	
ATS	32.9%	1,040	271	1,233	
Conventional CT	10.4%	681	392	835	
Dual Fueled Engine	0.1%	395	313	573	
Fuel Cell-PEM Gas	0.0%	368	312	571	
Fuel Cell- Phos Acid	0.0%	368	312	571	

2002 Bill Analysis--Low (PG&E) DRAFT 4/20/00

Technology	Total	Portion of	% Change Relative to Central Station		
	B/C Ratio	Energy From DG	NOx	PM	CO2
Microturbine	.59	7.7%	+60%	-2%	+36%
Micro w/CHP	.79	67.1%	+267%	-50%	-78%
Diesel	.65	7.7%	+946%	+184%	+54%
ATS w/CHP	.72	35.7%	+134%	-27%	-17%
Gas Spark	.65	7.7%	+189%	+24%	+29%
Fuel Cell	.21	7.7%	-8%	-8%	+23%

2002 Bill Analysis--High (SDG&E) DRAFT 4/20/00

Technology	Total B/C Ratio	Portion of Energy From DG	% Change Relative to Central Station		
			NOx	PM	CO2
Microturbine	1.29	44.5%	+346%	-12%	+210%
Micro w/CHP	1.47	100.0%	+398%	-74%	-117%
Diesel	.99	24.6%	+3,032%	+590%	+173%
ATS w/CHP	1.31	100.0%	+376%	-75%	-47%
Gas Spark	1.2	44.5%	+1,095%	+141%	+165%
Fuel Cell	.62	44.5%	-45%	-45%	+134%

Next Steps

- ◆ Continue to Investigate Potential Impacts
- Consult With Local Air Districts
- ◆ Participate in Upcoming CEQA Workshops
- ♦ Respond as Market Evolves

Summary

- ♦ Impacts Uncertain
- ♦ Preliminary Estimates
- **♦** Continue
 - —Monitoring Proceedings
 - -Research
 - —Stakeholder Dialogue
- ♦ Respond as DG Market Evolves